Investigation on the Compressive Characteristics and Optimization of Design Parameters of a Novel Functionally Graded Cell Structure

Author:

Ganapathy Sakthi BalanORCID,Sakthivel Aravind RajORCID

Abstract

Abstract Novel structural conceptualizations frequently incorporate inventive ideas, materials, or construction techniques. This study presents a unique design inspired by the traditional practice of sikku rangoli, a cultural tradition prevalent in the southern region of India, particularly in Tamil Nadu. Because it was novel, it was necessary to optimize the fundamental design for maximal outputs. In contrast to honeycomb structures, intercellular interactions are believed to contribute to the overall strengthening of the structure. By eliminating sharp corners from the structure, stress accumulation is prevented, resulting in improved stress distribution. Therefore, the design aspects that were deemed significant were taken into consideration and through the implementation of experimental design, an optimum design was determined. Utilizing the optimal base design as a foundation, the structure underwent several printing processes using diverse materials and incorporated multiple fillers. Furthermore, the structure was subjected to modifications employing the functional grading design concept. The study employed the functional grading design concept to examine the variations in load bearing capability, load distribution, and failure mode. The findings indicate that the compression strength of the composite structure was mostly influenced by the wall thickness. The combination of a carbon fiber reinforced base material with silicone rubber as filler, together with a functional graded cell structure featuring top and bottom densification, exhibited the highest compression strength compared to all other combinations. In order to investigate the accurate impact of the FG structures, every cell design was printed using PLA-CF, subjected to testing devoid of any additives, and the output parameters were computed. The results indicated that the center densified cell design exhibited significant values for specific energy absorption, relative density, and compressive strength (52.63 MPa, 0.652, and 2.95 kJ kg−1, respectively). The design of the base cell exhibited the greatest crushing force efficacy of 0.982.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3