High heating efficiency of interactive cobalt ferrite nanoparticles

Author:

Phong Le Thi Hong,Hung Manh Do,Pham Hong Nam,Pham Thanh Phong,Kováč J,Skorvanek I,Phan The Long,Phan Manh Huong,Nguyen Xuan Phuc

Abstract

Abstract Cobalt ferrite nanoparticles (CFNPs) are emerging as a potential candidate for biomedical applications, such as magnetic hyperthermia therapy (MHT), due to their high saturation magnetisation (M S) and effective magnetic anisotropy constant (K eff) at the nanoscale. For MHT, heating efficiency depends considerably on applied AC magnetic field, particle diameter, and inter-particle interaction. Our study is aimed at developing a superparamagnetic nanosystem based on CFNPs with enhanced specific absorption rate (SAR) for advanced MHT. The CFNPs were synthesised using thermal decomposition of organometallic precursors. Transmission electron microscopy reveals a narrow size distribution of the CFNPs, with average particle sizes of 8 and 11 nm. Magnetic measurements showed high values of M S (~70 emu g−1) and K eff (2–3 × 106 erg cm−3). The ferromagnetic behaviour and strong interaction between particles at room temperature are also observed. Large SAR values of the CFNPs are achieved, which are superior to those reported previously in the literature. The high heating efficiencies of the present CFNPs make them a promising candidate for advanced MHT.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3