Abstract
Abstract
Two approaches to simulations of phonon properties of solids beyond the harmonic approximation, the self-consistent ab initio lattice dynamics (SCAILD) and decoupled anharmonic mode approximation (DAMA) are critically benchmarked against each other and molecular dynamics simulations using a density-functional-theory description of electronic states, and compared to experimental data for fcc aluminium. The temperature-dependence of phonon dispersion and the phonon density-of-states, heat capacity, and the mean atomic displacement for fcc aluminium are examined with these approaches at ambient pressure. A comparison of results obtained with the harmonic approximation to the ones predicted by SCAILD and DAMA reveal a negligible anharmonic contribution to phonon frequencies, a small, but significant influence on heat capacity, and a strong effect on atomic mean-square displacement. The phase space accessed with SCAILD and DAMA is reduced relative to molecular and harmonic lattice dynamics simulations. In particular the DAMA results are in good agreement with displacement amplitudes determined by the Debye–Waller factor in x-ray diffraction experiments.
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献