Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles

Author:

Bulut PınarORCID,Beceren Berna,Yıldırım SerbülentORCID,Sevik CemORCID,Gürel TanjuORCID

Abstract

Abstract The theoretical investigation on structural, vibrational, and electronic properties of zinc-blende (ZB) AgI were carried out employing first principles density functional theory calculations. Thermoelectric properties then were predicted through semi-classical Boltzmann transport equations within the constant relaxation time approximation. Equilibrium lattice parameter, bulk modulus, elastic constants, and vibrational properties were calculated by using generalized gradient approximation. Calculated properties are in good agreement with available experimental values. Electronic and thermoelectric properties were investigated both with and without considering spin–orbit coupling (SOC) effect which is found to have a strong influence on p-type Seebeck coefficient as well as the power factor of the ZB–AgI. By inclusion of SOC, a reduction of the band-gap and p-type Seebeck coefficients as well as the power factor was found which is the indication of that spin–orbit interaction cannot be ignored for p-type thermoelectric properties of the ZB–AgI. By using deformation potential theory for electronic relaxation time and experimentally predicted lattice thermal conductivity, we obtained a ZT value 1.69 (0.89) at 400 K for n-type (p-type) carrier concentration of 1.5 × 1018 (4.6 ×1019) cm−3 that makes ZB–AgI as a promising room temperature thermoelectric material.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3