Generation of higher-order topological insulators using periodic driving

Author:

Ghosh Arnob KumarORCID,Nag TanayORCID,Saha ArijitORCID

Abstract

Abstract Topological insulators (TIs) are a new class of materials that resemble ordinary band insulators in terms of a bulk band gap but exhibit protected metallic states on their boundaries. In this modern direction, higher-order TIs (HOTIs) are a new class of TIs in dimensions d > 1. These HOTIs possess ( d 1 ) -dimensional boundaries that, unlike those of conventional TIs, do not conduct via gapless states but are themselves TIs. Precisely, an nth order d-dimensional higher-order TI is characterized by the presence of boundary modes that reside on its d c = ( d n ) -dimensional boundary. For instance, a three-dimensional second (third) order TI hosts gapless (localized) modes on the hinges (corners), characterized by d c = 1 ( 0 ) . Similarly, a second-order TI (SOTI) in two dimensions only has localized corner states ( d c = 0 ). These higher-order phases are protected by various crystalline as well as discrete symmetries. The non-equilibrium tunability of the topological phase has been a major academic challenge where periodic Floquet drive provides us golden opportunity to overcome that barrier. Here, we discuss different periodic driving protocols to generate Floquet HOTIs while starting from a non-topological or first-order topological phase. Furthermore, we emphasize that one can generate the dynamical anomalous π-modes along with the concomitant 0-modes. The former can be realized only in a dynamical setup. We exemplify the Floquet higher-order topological modes in two and three dimensions in a systematic way. Especially, in two dimensions, we demonstrate a Floquet SOTI (FSOTI) hosting 0- and π corner modes. Whereas a three-dimensional FSOTI and Floquet third-order TI manifest one- and zero-dimensional hinge and corner modes, respectively.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3