Quantum enhanced efficiency and spectral performance of paper-based flexible photodetectors functionalized with two dimensional materials

Author:

Sharma Monika,Mazumder NirmalORCID,Ajayan Pulickel M,Deb PritamORCID

Abstract

Abstract Flexible photodetectors (PDs) have exotic significance in recent years due to their enchanting potential in future optoelectronics. Moreover, paper-based fabricated PDs with outstanding flexibility unlock new avenues for future wearable electronics. Such PD has captured scientific interest for its efficient photoresponse properties due to the extraordinary assets like significant absorptive efficiency, surface morphology, material composition, affordability, bendability, and biodegradability. Quantum-confined materials harness the unique quantum-enhanced properties and hold immense promise for advancing both fundamental scientific understanding and practical implication. Two-dimensional (2D) materials as quantum materials have been one of the most extensively researched materials owing to their significant light absorption efficiency, increased carrier mobility, and tunable band gaps. In addition, 2D heterostructures can trap charge carriers at their interfaces, leading increase in photocurrent and photoconductivity. This review represents comprehensive discussion on recent developments in such PDs functionalized by 2D materials, highlighting charge transfer mechanism at their interface. This review thoroughly explains the mechanism behind the enhanced performance of quantum materials across a spectrum of figure of merits including external quantum efficiency, detectivity, spectral responsivity, optical gain, response time, and noise equivalent power. The present review studies the intricate mechanisms that reinforce these improvements, shedding light on the intricacies of quantum materials and their significant capabilities. Moreover, a detailed analysis of the technical applicability of paper-based PDs has been discussed with challenges and future trends, providing comprehensive insights into their practical usage in the field of future wearable and portable electronic technologies.

Funder

DST ASEAN project

INSPIRE, Department of Science and Technology (DST), Govt. of India

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3