Laser-induced breakdown spectroscopy for the classification of wood materials using machine learning methods combined with feature selection

Author:

CUI Xutai,WANG Qianqian,WEI Kai,TENG Geer,XU Xiangjun

Abstract

Abstract In this paper, we explore whether a feature selection method can improve model performance by using some classical machine learning models, artificial neural network, k-nearest neighbor, partial least squares-discrimination analysis, random forest, and support vector machine (SVM), combined with the feature selection methods, distance correlation coefficient (DCC), important weight of linear discriminant analysis (IW-LDA), and Relief-F algorithms, to discriminate eight species of wood (African rosewood, Brazilian bubinga, elm, larch, Myanmar padauk, Pterocarpus erinaceus, poplar, and sycamore) based on the laser-induced breakdown spectroscopy (LIBS) technique. The spectral data are normalized by the maximum of line intensity and principal component analysis is applied to the exploratory data analysis. The feature spectral lines are selected out based on the important weight assessed by DCC, IW-LDA, and Relief-F. All models are built by using the different number of feature lines (sorted by their important weight) as input. The relationship between the number of feature lines and the correct classification rate (CCR) of the model is analyzed. The CCRs of all models are improved by using a suitable feature selection. The highest CCR achieves (98.55...0.39)% when the SVM model is established from 86 feature lines selected by the IW-LDA method. The result demonstrates that a suitable feature selection method can improve model recognition ability and reduce modeling time in the application of wood materials classification using LIBS.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3