A study of the temperature distribution in the OTEC cold water pipe using a heat and mass transfer approach

Author:

Firmansyah A I,Mukhtasor ,Satrio D,Rahmawati S,Ikhwani H,Pratikto W A

Abstract

Abstract The difference between sea water temperature at a depth of around 1000 m and sea water temperature at sea level is generally used as a parameter in the design of Ocean Thermal Energy Conversion (OTEC). In practice, electricity generation is determined by the difference between the temperature of the cold seawater coming out of the Cold Water Pipe (CWP) and the temperature of the seawater at the surface. The temperature of cold sea water increases due to heat transfer experienced by cold sea water flowing through the CWP, which comes into contact with surrounding sea water which has a higher temperature. This in turn provides a lower actual temperature difference, and therefore reduces the design power capacity. However, many previous studies did not consider these lower temperature differences. This may be acceptable for cases with practically small heat transfer such as CWP with low thermal conductivity combined with good insulation used in 1000 m CWP vertical floating systems. Unfortunately, this may not be the case for many of OTEC’s proposed alternative sites, which are located on land systems that require CWP lengths of five km or more. This raises the need for careful investigation to determine the temperature of the sea water coming out of the CWP, where it is necessary to calculate the temperature distribution of the cold sea water flowing through the CWP. This paper aims to estimate the temperature distribution of cold sea water flowing through the CWP and the increase in temperature of cold sea water leaving the CWP. Analysis based on the principles of mass and heat transfer was carried out in this research, where modelling was carried out numerically using a finite volume approach. For the case considered, the change in sea water temperature at CWP from depth to the surface occurs 1-3°C, which is the accumulation of each change in sea water depth. The results of this research illustrate that designing an OTEC system with a long CWP must consider the temperature distribution of cold sea water flowing through the CWP to produce a more realistic design.

Publisher

IOP Publishing

Reference37 articles.

1. Design of Ocean Current Blade Turbine 100 kW using Hydrodynamics Simulation Approach;Firmansyah;J. Adv. Res. Fluid Mech. Therm. Sci.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3