Assessing the Environmental Impact of Empty Fruit Bunches for Electricity Generation in Malaysia: A Life Cycle Perspective

Author:

Sukhairul Zaman Nur Zaqira Izzati,Abbas Ahmad Rosly,Zainal Mohamad Fetri,Quek Alexandra,Wan Ata Wan Nur Syuhada,Mohd Yapandi Md Fauzan Kamal,Ibrahim Zul Fadli

Abstract

Abstract Empty fruit bunches (EFB) constitute a significant residual byproduct of the palm oil mill industry in Malaysia, representing approximately 22% of the weight of every fresh fruit bunch. This study aims to evaluate the environmental impacts associated with electricity generation utilizing EFB as a primary fuel through a cradle – to – grave life cycle assessment (LCA) approach. The system boundary encompasses the power plant construction, fuel preparation, electricity generation and all transportation activities throughout its life cycle. The EFBs are sourced from seven palm mills situated within a 50-kilometer radius of the plant. SimaPro 9.4.02 software integrated with Ecoinvent 3.8 database was employed to quantify the magnitudes of significant environmental indicators, such as global warming potential (GWP), ozone depletion potential (ODP), acidification potential (AP), eutrophication potential (EP), and photochemical oxidant creation potential (POCP), based on a functional unit of 1 kWh of electricity produced. The emission rate for the biomass plant stands at – 5.31 kgCO2eq/kWh, signifying a net carbon sink. The electricity generation process accounts for a substantial 96.48% of the total CO2eq/kWh emissions, thus bearing the greatest environmental burden. The construction phase of the biomass plant contributes approximately 3.06% of the total emissions, while the EFB transportation to the power plant represents a minor 0.19% of the overall emissions. A sensitivity analysis was conducted to evaluate the plant’s efficiency across fiscal years 2018 to 2021 and its corresponding global warming impacts. In 2021, the plant’s operations resulted in the most significant carbon avoidance, given the combustion of a high volume of EFB (188 kilotons) to produce 49.3GWh of electricity. The findings from this study serve as a valuable benchmark for evaluating emissions in the context of the empty fruit bunch-based plant in Peninsular Malaysia, hence offering profound insights into the environmental sustainability of the palm oil industry.

Publisher

IOP Publishing

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3