Production of bioelectricity from palm oil mill effluent through a dual chamber-microbial fuel cell system with the addition of Lactobacillus bulgaricus

Author:

Febriawan SD,Febriana AP,Yuniarto A,Purwanto M

Abstract

Abstract Palm oil liquid waste has been successfully developed to produce bio-electricity with a dual chamber-microbial fuel cell system. This study utilized the Lactobacillus bulgaricus bacteria as a support for the substrate samples prepared in the anode chamber. Meanwhile, in the cathode chamber, KMnO4 electrolyte solution is used as an electroactive species that can capture electrons well. In addition, salt bridges fabricated from agar have a role as ion-exchange media in microbial fuel cells. The test results showed that the best performance was obtained in samples of palm oil wastewater with the addition of 10% Lactobacillus bulgaricus (LS/B-10) bacteria with current, voltage, and power density values of 0.9640 mA, 0.6760 V, and 248.04 mW/m2, respectively. The MFC system has also been proven to be able to reduce COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) levels, with the results of a reduction percentage of 42.6% and 7.2%, respectively, in the LS/B-10 variable treatment. All test results show that palm oil wastewater with the addition of Lactobacillus bulgaricus bacteria is promising for producing bioelectricity with a microbial fuel cell system.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3