Three-dimensional stochastic model for stratigraphic uncertainty quantification using Bayesian machine learning

Author:

Wang Hui,Wei Xingxing

Abstract

Abstract Data-driven geotechnics is an emerging research field that contributes to the digitalization of geotechnical engineering. Among the numerous applications of digital techniques in geotechnical engineering, interpreting and simulating stratigraphic conditions with quantified uncertainty is an essential task and an open question in geotechnical practice. However, developing an uncertainty-aware integration of subjective engineering judgments (i.e., geological knowledge) and sparse objective site exploration results (i.e., borehole observations) is challenging. This investigation develops an effective three-dimensional stochastic geological modeling framework based on Markov random field (MRF) theory and Bayesian machine learning to characterize stratigraphic uncertainty. The proposed model considers both stratigraphic uncertainty (inherent) and model uncertainty (imperfect knowledge). A stratigraphic modeling example was studied to demonstrate the effectiveness of the proposed approach. We envision that this approach could be further generalized to industrial practices to improve risk control in geotechnical engineering.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3