Intelligent prediction and evaluation method of optimal frequency based on PSO-BPNN-AdaBoost model

Author:

Chen X B,Hao Z R,Xie K,Li T F,Li J S

Abstract

Abstract To achieve rapid and accurate determination of the optimal compaction frequency for high-speed railway subgrade materials, a method based on the PSO-BPNN-AdaBoost model for intelligent frequency estimation is proposed. Firstly, the Particle Swarm Optimization (PSO) algorithm is introduced to obtain the optimal hyperparameters of the Backpropagation Neural Network (BPNN), and then the PSO-BPNN-AdaBoost model is established by integrating the AdaBoost ensemble algorithm. Secondly, taking graded gravel fill material as an example, the Grey Relational Analysis algorithm (GRA) is employed to identify the main controlling features affecting f op as input features for the model, and the predictive performance of the model is evaluated. Finally, the model’s reliability is verified through ablation analysis. The results indicate that the PSO-BPNN-AdaBoost model demonstrates higher predictive accuracy. The main controlling features influencing f op are revealed to be the maximum particle size (d max), gradation parameters (b, m), coarse aggregate elongation index (EI), Los Angeles Abrasion (LAA), water absorption rates (W ac, W af).

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3