Exploration, isolation and characterization of indigenous rhizobacteria from patchouli rhizosphere as PGPR candidates in producing IAA and solubilizing phosphate

Author:

Halimursyadah H,Syamsuddin ,Nurhayati ,Rizva DN

Abstract

Abstract Microorganisms that are active and aggressive colonizing the rhizosphere are known as rhizobacteria. They are able to act as biofertilizers, bioprotectants, biostimulants and bioremediation. This study aims to identify and characterize groups of rhizobacteria present in the patchouli rhizosphere that can produce IAA compounds and have the ability to solubilize phosphate in the soil. Soil samples were taken from the patchouli rhizosphere at Purwosari Village, Nagan Raya, Aceh Province, Indonesia. This study used quantitative and qualitative descriptive analysis through serial dilutions to obtain rhizobacterial strains. Parameters observed were macroscopic and microscopic characteristics, gram test, IAA production and phosphate solubilization. The study obtained 37 isolates of rhizobacteria from Purwosari (PS), comprising 25 isolates of gram positive and 12 isolates of gram negative. The rhizobacteria PS 5/1 produced the lowest IAA at 21.66 ppm, whereas isolate 5/6 C produced the highest IAA at 83.38 ppm. Twenty-five isolates of rhizobacteria could solubilize phosphate while the remaining 12 isolates did not have this ability. The rhizobacteria PS 7/1 resulted in the highest PSI at 2.55 and isolates PS 8/7 produced the lowest PSI at 1.33. The rhizobacteria isolates that can produce IAA and phosphate solubilizing have the potential to be used as PGPR candidates.

Publisher

IOP Publishing

Subject

General Engineering

Reference22 articles.

1. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective;Ahemad;J. King Saud Univ. - Sci.,2014

2. Isolation And Activity Of Plant Growth Promoting Rhizobacteria (Rhizobium, Azospirillum, Azotobacter, Pseudomonas);Widawati,2015

3. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins;Gutiérrez-Mañero;Physiol. Plant.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3