Prediction of fuel consumption and carbon dioxide emission when replacing gaseous fuels with renewable hydrogen or their mixture

Author:

Gupalo Olena,Yeromin Oleksandr,Kabakova Liudmyla,Kolienko Anatoliy,Kirsanov Mykhailo,Kulikov Andrii

Abstract

Abstract The paper is devoted to predicting changes in fuel consumption and carbon dioxide emissions when industrial equipment is converted to heating with renewable hydrogen or a mixture of it with other gaseous fuels, such as natural gas. The authors developed a simplified methodology that is appropriate for assessing changes in the energy consumption of equipment and the environmental impact of fuel replacement at the stage preceding the equipment reconstruction. The peculiarity of the methodology is that it allows the calculation of fuel consumption and carbon dioxide emissions when fuel replacement is accompanied by the implementation of measures aimed at improving the energy efficiency of equipment. The methodology can be used for heating and thermal furnaces in metallurgy and mechanical engineering, units for heat treatment of raw materials in the mining and processing industries, heating devices in the food industry, and water and steam boilers. In the example of replacing natural gas with its mixture with renewable hydrogen of different compositions, it is shown that the calculation error using the proposed methodology in comparison with the results obtained by mathematical modeling of fuel combustion, gas flow and heat transfer in this furnace does not exceed 1.5%.

Publisher

IOP Publishing

Reference13 articles.

1. International Energy Agency Report;World Energy Outlook,2022

2. Towards H2 implementation in the iron- and steelmaking industry: State of the art, requirements, and challenges for refractory materials;Gomes;Journal of the European Ceramic Society,2024

3. Heat and power analysis of technologies for reducing carbon dioxide emissions and increasing the energy efficiency of blast-furnace production;Chaika;Steel in Translation,2021

4. Prospects for decarbonization of metallurgical technologies;Babachenko;Fundamental and applied problems of ferrous metallurgy,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3