Building energy simulations for different building types equipped with a high performance thermochromic smart window

Author:

Mann D,Yeung C,Habets R,Vroon Z,Buskens P

Abstract

Abstract With constantly progressing climate change and global warming, we face the challenge to reduce our energy consumption and CO2 emission. To increase the energy-efficiency in buildings, we developed a thermochromic coating for smart windows which is optimized for intermediate climates. Here we present a building energy simulation study for the use of our smart window in the four main residential building types in the Netherlands. In the study we show that for all building types energy savings between 15-30% can be achieved. Hereby the impact of the windows on energy consumption is dependent on the window surface area as well as the total floor space. Furthermore we show that by the use of our new smart window, where the thermochromic coating is combined with a standard low-e coating, annual cost savings for energy between 220-445 € for a single household can be achieved. The thermochromic coating usually accounts for half of these cost savings, that is an addition in cost savings between 6-7.5 €/m2 glass. Due to the low material and processing costs for the thermochromic coating, a return on invest within 7 years should be feasible with these annual cost savings.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3