Turbocharger surge behavior for sudden valve closing downstream the compressor and effect of actuating variable nozzle turbine

Author:

Danlos A,Podevin P,Deligant M,Clenci A,Punov P,Guilain S

Abstract

Abstract Surge is an unstable phenomenon appearing when a valve closing reduces the compressor flow rate. This phenomenon is avoided for automotive turbochargers by defining a surge margin during powertrain system design. This surge margin established with measurements in steady state testing regime limits the maximal engine torque at low levels of output. An active control of the compressor could reduce the surge margin and facilitate a transient compressor operation for a short time in surge zone. In this paper, an experimental study of the transient operation of a turbocharger compressor entering the surge zone is performed. Control of the turbocharger speed is sought to avoid unsteady operation using the variable geometry turbine (VGT) nozzle actuator. From a given stable operating point, surge is induced by reducing the opening of a valve located downstream of the compressor air circuit. The effect of reducing the speed of rotation by controlling the VGT valve is investigated, as this should lead to more stable compressor operation. The rotation speed of the turbocharger is controlled to avoid an unstable operating point using servo-actuator of variable geometry turbine. From a stable operating point, the surge appearance is caused by closing a butterfly valve downstream the air circuit of the compressor. The effect on the compressor rotation speed when the opening of variable geometry turbocharger valve is modified is studied. Measurements have been conducted for different control profiles of the VGT valve placed downstream the compressor. This article presents the means used to carry out these tests as well as the results of the measurements of the instantaneous signals of pressure, temperature, flow rate and rotation speed, allowing the analysis of the surge phenomenon.

Publisher

IOP Publishing

Subject

General Engineering

Reference18 articles.

1. Efficiency improvement of a PEMFC system by applying a turbocharger;Kim;Int. J. of Hydrog. Energy,2014

2. Flow phenomena leading to surge in a centrifgual compressor;Semlitsch;Energy,2016

3. Stall, Surge and 75 years of research;Day;J. Turbomach. Trans. ASME,2016

4. Increasing surge margin of turbocharger centrifugal compressor automotive application;Mohtar,2010

5. Pre-swirl mechanism in front of a centrifugal compressor: effects on surge line and on unsteady phenomena in surge area;Danlos;MATEC Web of Conferences,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel experimental control method to suppress instability in a centrifugal compressor with two counter and co-rotating rotors;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-06-19

2. Experimental Investigations of Centrifugal Compressor Surge Noise;Journal of Turbomachinery;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3