On the colloidal and filtration properties of a polymer-amended waste K+-rich bentonite for use as a low-density solid additive in water-based drilling fluids

Author:

Ramsis Youstina,Papaloizou Loizos,Sarris Ernestos,Vattis Demetris

Abstract

Abstract Bentonite is a known material for its water-soluble nature and ability to develop exceptional colloidal properties when in aqueous environments and is Na+-rich. Some bentonites are not capable of achieving the desired colloidal properties due to either low smectite content and/or low or negligible Na+ ions content. An example of such bentonite is like the one used for this research work, which is waste K+-rich bentonite. Even though it previously was thermally Na2CO3-activated to upgrade its properties aiming to create colloids, it demanded further viscosity enhancement additives to achieve the required rheological and filtration control satisfying API standards when added in a complete water-based drilling fluid (WBF). We propose anionic polymerization to enhance the performance of the thermally activated waste K+-rich bentonite, at various concentrations. The basic objective is to investigate the polymer with the strongest amendment effect on the K+-rich bentonite by evaluating the rheological and filtration properties by means of Couette viscometry and LPLT tests respectively. Results collected were used to construct mathematical correlations suggesting that anionic polymers can be considered a very effective and efficient solution to reach the desired colloidal properties in WBF. The proposed solution, even with minor quantities, proves to be effective for waste K+-rich bentonite making the material suitable for WBF by creating composite structures that effectively reduce fluid losses and achieve the required viscosity control in WBF. Finally, the exploitation of this material aligns with the circular economy principles contributing to environmental sustainability development.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3