A Quick Calculation Method for Radiation Pattern of Submillimeter Telescope with Deformation and Displacement

Author:

You Jia,Yao Yi-Wei,Wang Zheng

Abstract

Abstract Radiation pattern captures the electromagnetic performance of reflector antennas, which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflector. During the design process of large reflector antennas, a substantial amount of time is often dedicated to iteratively adjusting structural parameters and validating electromagnetic performance. To improve the efficiency of the design process, we first propose an approximate calculation method of optical path difference (OPD) for the deformation of the primary reflector under gravity and the displacement of the secondary reflector. Then an OPD fitting function based on the modified Zernike polynomials is proposed to capture the phase difference of radiation over the aperture plane, based on which the radiation pattern will be obtained quickly by the aperture field integration method. Numerical experiments demonstrate the effectiveness of the proposed quick calculation method for analyzing the radiation pattern of a 10.4 m submillimeter telescope antenna at its highest operating frequency of 856 GHz. In comparison with the numerical simulation method based on GRASP (which is an antenna electromagnetic analysis tool combining physical optics (PO) and physical theory of diffraction (PTD)), the quick calculation method reduces the time for radiation pattern analysis from more than one hour to less than two minutes. Furthermore, the quick calculation method exhibits excellent accuracy for the figure of merit (FOM) of the radiation pattern. Therefore, the proposed quick calculation method can obtain the radiation pattern with high speed and accuracy. Compared to the time-consuming numerical simulation method (PO and PTD), it can be employed for quick analysis of the radiation pattern for the lateral displacement of the secondary reflector and the deformation of the primary reflector under gravity in the design process of a reflector antenna.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3