Accretion flows around spinning compact objects in the post-Newtonian regime

Author:

Nazari ElhamORCID,Mitra SamikORCID,Abbassi Shahram,Das SantabrataORCID

Abstract

Abstract We present the structure of a low angular momentum accretion flows around rotating compact objects incorporating relativistic corrections up to the leading post-Newtonian order. To begin with, we formulate the governing post-Newtonian hydrodynamic equations for the mass and energy-momentum flux without imposing any symmetries. However, for the sake of simplicity, we consider the flow to be stationary, axisymmetric, and inviscid. Toward this, we adapt the polytropic equation of state (EoS) and analyze the vertically integrated accretion flow confined to the equatorial plane. It is shown that the spin-orbit effects manifest themselves in the accretion dynamics. In the present analysis, we focus on global transonic accretion solutions, where a subsonic flow enters far away from the compact object and gradually gains radial velocity as it moves inwards. Thus, the flow becomes supersonic after reaching a certain radius, known as the critical point. To better understand the transonic solutions and examine the effect of post-Newtonian corrections, we classify the post-Newtonian equations into semi-relativistic (SR), semi-Newtonian (SN), and non-relativistic (NR) limits and compare the accretion solutions and their corresponding flow variables. With these, we find that SR and SN flow are in good agreement all throughout, although they deviate largely from the NR ones. Interestingly, the density profile seems to follow the profile ρr -3/2 in the post-Newtonian regime. The present study has the potential to connect Newtonian and GR descriptions of accretion dynamics.

Publisher

IOP Publishing

Reference80 articles.

1. Black holes in binary systems. Observational appearance;Shakura;Astron. Astrophys.,1973

2. Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk;Page;Astrophys. J.,1974

3. The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole;Cunningham;Astrophys. J.,1975

4. Advection dominated accretion: A Selfsimilar solution;Narayan;Astrophys. J. Lett.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3