Abstract
Abstract
Reliable vertical position control will be an essential element of any future tokamak-based fusion power plant in order to reduce disruptions and maximize performance. We investigate methods to improve vertical controllability boundary determination in plasma operational space and demonstrate a data-driven approach based on direct pseudoinversion of operational space data that is rigorously quantitative, applicable in real-time plasma control systems, and physically intuitive to interpret. Applied to historical shot data from entire run campaigns on the MAST-U, KSTAR, and NSTX tokamaks, this approach, implemented in DECAF, improves vertical displacement event identification accuracy to 98.9%–100%. Further, we explore the application of a physics-based vertical stability metric as an early warning forecaster for vertical displacement events. The development of a linear surrogate model for the plasma current density profile, with a coefficient of determination of 0.992 on the training dataset, enables potential employment of this forecaster in real-time. The application of this approach on historical data from the MAST-U MU02 campaign yields a forecaster with 62.6% accuracy, indicating promise for this method when further refined and potentially coupled with other stability metrics.
Funder
Ministry of Science and ICT, South Korea
EPSRC Energy Programme
U.S. Department of Energy