Numerical investigation of optimal divertor gas baffle closure on TCV

Author:

Galassi DORCID,Reimerdes HORCID,Theiler CORCID,Wensing MORCID,Bufferand H,Ciraolo G,Innocente P,Marandet Y,Tamain P,EUROfusion MST1 Team the,TCV Team the

Abstract

Abstract A first set of divertor gas baffles has recently been installed in the TCV tokamak. In order to explore the physics determining the benefits and limitations of divertor baffling and to guide the design of a possible second generation of baffles, the effect of baffle closure is investigated using the 2D transport code SolEdge2D-EIRENE with realistic wall geometries. The baffle extension is scanned, first imposing the same upstream conditions as in previous SOLPS-ITER studies, then extending the parameter space to access detached plasma conditions. In attached plasma cases, divertor neutral compression is maximised by a Low-Field Side baffle length with an opening between the separatrix and the baffle tip of approximately 5 λ q , resulting in an increase in neutral compression by a factor 4 with respect to the unbaffled case. In detached cases this ratio can be improved by up to a factor 25 using higher baffle closures. This difference in behaviour between attached and detached conditions is explained by a model based on the ionisation mean free path of neutral particles recycled from the target. In some conditions, the optimal baffle extension in terms of neutral compression is found to be subject to high levels of intercepted upstream heat flux, which results in a peak heat flux on the baffles comparable to the one impinging on the outer target. The individual roles of the High-Field Side and Low-Field Side baffles are disentangled by means of dedicated simulations, which show a lower global impact of the inner baffle. This study suggests that an outer baffle with a gap of approximately 3 λ q , slightly more closed than the one presently installed, could further enhance the neutral compression ratio in cases where the ionisation front is detached. The biggest unknown in these simulations is related to far SOL particle transport, which could result in higher levels of baffle recycling and thus limit baffle performance.

Funder

H2020 Euratom

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3