Machine learning approach to force reconstruction in photoelastic materials

Author:

Sergazinov RenatORCID,Kramár MiroslavORCID

Abstract

Abstract Photoelastic techniques have a long tradition in both qualitative and quantitative analysis of the stresses in granular materials. Over the last two decades, computational methods for reconstructing forces between particles from their photoelastic response have been developed by many different experimental teams. Unfortunately, all of these methods are computationally expensive. This limits their use for processing extensive data sets that capture the time evolution of granular ensembles consisting of a large number of particles. In this paper, we present a novel approach to this problem that leverages the power of convolutional neural networks to recognize complex spatial patterns. The main drawback of using neural networks is that training them usually requires a large labeled data set which is hard to obtain experimentally. We show that this problem can be successfully circumvented by pretraining the networks on a large synthetic data set and then fine-tuning them on much smaller experimental data sets. Due to our current lack of experimental data, we demonstrate the potential of our method by changing the size of the considered particles which alters the exhibited photoelastic patterns more than typical experimental errors.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3