Regulating the development of accurate data-driven physics-informed deformation models

Author:

Newman WillORCID,Ghaboussi Jamshid,Insana MichaelORCID

Abstract

Abstract The challenge posed by the inverse problem associated with ultrasonic elasticity imaging is well matched to the capabilities of data-driven solutions. This report describes how data properties and the time sequence by which the data are introduced during training influence deformation-model accuracy and training times. Our goal is to image the elastic modulus of soft linear-elastic media as accurately as possible within a limited volume. To monitor progress during training, we introduce metrics describing convergence rate and stress entropy to guide data acquisition and other timing features. For example, a regularization term in the loss function may be introduced and later removed to speed and stabilize developing deformation models as well as establishing stopping rules for neural-network convergence. Images of a 14.4 cm3 volume within 3D software phantom visually indicate the quality of modulus images resulting over a range of training variables. The results show that a data-driven method constrained by the physics of a deformed solid will lead to quantitively accurate 3D elastic modulus images with minimum artifacts.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3