Artificial intelligent identification of apatite fission tracks based on machine learning

Author:

Ren Zuoting,Li ShichaoORCID,Xiao Perry,Yang Xiaopeng,Wang Hongtao

Abstract

Abstract Over the past half century, apatite fission track (AFT) thermochronometry has been widely used in the studies of thermal histories of Earth’s uppermost crust. The acquired thermal histories in turn can be used to quantify many geologic processes such as erosion, sedimentary burial, and tectonic deformation. However, the current practice of acquiring AFT data has major limitations due to the use of traditional microscopes by human operators, which is slow and error-prone. This study uses the local binary pattern feature based on the OpenCV cascade classifier and the faster region-based convolutional neural network model based on the TensorFlow Object Detection API, these two methods offer a means for the rapid identification and measurement of apatite fission tracks, leading to significant improvements in the efficiency and accuracy of track counting. We employed a training dataset consisting of 50 spontaneous fission track images and 65 Durango standard samples as training data for both techniques. Subsequently, the performance of these methods was evaluated using additional 10 spontaneous fission track images and 15 Durango standard samples, which resulted in higher Precision, Recall, and F1-Score values. Through these illustrative examples, we have effectively demonstrated the higher accuracy of these newly developed methods in identifying apatite fission tracks. This suggests their potential for widespread applications in future apatite fission track research.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Jilin Provincial Education Department, China

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3