Benchmarking machine learning interatomic potentials via phonon anharmonicity

Author:

Bandi SasaankORCID,Jiang Chao,Marianetti Chris AORCID

Abstract

Abstract Machine learning approaches have recently emerged as powerful tools to probe structure-property relationships in crystals and molecules. Specifically, machine learning interatomic potentials (MLIPs) can accurately reproduce first-principles data at a cost similar to that of conventional interatomic potential approaches. While MLIPs have been extensively tested across various classes of materials and molecules, a clear characterization of the anharmonic terms encoded in the MLIPs is lacking. Here, we benchmark popular MLIPs using the anharmonic vibrational Hamiltonian of ThO2 in the fluorite crystal structure, which was constructed from density functional theory (DFT) using our highly accurate and efficient irreducible derivative methods. The anharmonic Hamiltonian was used to generate molecular dynamics (MD) trajectories, which were used to train three classes of MLIPs: Gaussian approximation potentials, artificial neural networks (ANN), and graph neural networks (GNN). The results were assessed by directly comparing phonons and their interactions, as well as phonon linewidths, phonon lineshifts, and thermal conductivity. The models were also trained on a DFT MD dataset, demonstrating good agreement up to fifth-order for the ANN and GNN. Our analysis demonstrates that MLIPs have great potential for accurately characterizing anharmonicity in materials systems at a fraction of the cost of conventional first principles-based approaches.

Funder

Idaho Operations Office, U.S. Department of Energy

Office of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3