Using random forest for brain tissue identification by Raman spectroscopy

Author:

Zhang WeiyiORCID,Giang Chau Minh,Cai Qingan,Badie Behnam,Sheng Jun,Li Chen

Abstract

Abstract The traditional definitive diagnosis of brain tumors is performed by needle biopsy under the guidance of imaging-based exams. This paradigm is based on the experience of radiogolists, and accuracy could be affected by uncertainty in imaging interpretation and needle placement. Raman spectroscopy has the potential to improve needle biopsy by providing fingerprints of different materials and performing in situ tissue identification. In this paper, we present the development of a supervised machine learning algorithm using random forest (RF) to distinguish the Raman spectrum of different types of tissue. An integral process from raw data collection and preprocessing to model training and evaluation is presented. To illustrate the feasibility of this approach, viable animal tissues were used, including ectocinerea (grey matter), alba (white matter) and blood vessels. Raman spectra were acquired using a custom-built Raman spectrometer. The hyperparameters of the RF model were determined by combining a cross-validation-based algorithm and manually adjusting. The experimental results show the ability of our approach to discriminate different types of tissues with high accuracy.

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3