Abstract
Abstract
Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of multipoint query, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX, for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a virtual objective, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20× faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Reference63 articles.
1. Efficient global optimization of expensive black-box functions;Jones;J. Glob. Optim.,1998
2. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning;Brochu,2010
3. Online optimization of storage ring nonlinear beam dynamics;Huang;Phys. Rev. ST Accel. Beams,2015
4. Robust simplex algorithm for online optimization;Huang;Phys. Rev. Accel. Beams,2018
5. Model-independent particle accelerator tuning;Scheinker;Phys. Rev. ST Accel. Beams,2013
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献