An acoustic emission identification model for train axle fatigue cracks based on deep belief network

Author:

Lin LiORCID,Tang Xiaowen,Zhu Xiaoxiao,Yu Xinyuan,Bi Tianlong

Abstract

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3