Influence of the reference surface and AFM tip on the radius and roundness measurement of micro spheres

Author:

Oertel ErikORCID,Manske EberhardORCID

Abstract

Abstract The performance of tactile and optical surface sensors for nano and micro coordinate measuring machines is currently limited by the lack of precisely characterised micro spheres, since established strategies have mainly been developed for spheres in the range of millimetres or above. We have, therefore, recently focused our research efforts towards a novel strategy for the characterisation of spheres in the sub-millimetre range. It is based on a set of atomic force microscope (AFM) surface scans in conjunction with a stitching algorithm. To obtain an uncertainty statement, the uncertainty about the shape of the reference surface needs to be propagated via the shape of the AFM tip to the actual measurement object. However, the sampling process of an AFM is non-linear and the processing of AFM scans requires complex algorithms. We have, therefore, recently begun to model the characterisation of micro spheres through simulations. In this contribution, this model is extended by the influence of the tip and reference surface. The influence of the tip’s shape and reference surface is investigated through virtual and real experiments. The shape of the tip is varied by using tips with mean radii of 200 nm and 2 μm while sampling the same ruby sphere with a mean radius of 150 μm. In general, the simulation results imply that an uncertainty of less then 10 nm is achievable. However, an experimental validation of the model is still pending. The experimental investigations were limited by the lack of a suitable cleaning strategy for micro parts, which demonstrates the need for further investigations in this area. Although the characterisation of a full sphere has already been demonstrated, the investigations in this contribution are limited to equator measurements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference42 articles.

1. State of the art of tactile micro coordinate metrology;Thalmann;Appl. Sci.,2016

2. Surface-sensing principle of microprobe system for micro-scale coordinate metrology: a review;Michihata;Metrology,2022

3. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry;Su;Opt. Express,2017

4. Some theoretical aspects of error separation techniques in surface metrology;Whitehouse;J. Phys. E: Sci. Instrum.,1976

5. Self calibration method for 3D roundness of spheres using an ultraprecision coordinate measuring machine;Küng,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3