Fault diagnosis of rolling bearings based on dynamic convolution and dual-channel feature fusion under variable working conditions

Author:

Yao DechenORCID,Zhou Tao,Yang Jianwei,Meng Chang,Huan Baogui

Abstract

Abstract Addressing the challenge of inconsistent data feature distribution and the difficulty of fault diagnosis in rolling bearings operating under variable conditions, a novel approach is proposed for bearings fault diagnosis. Dynamic convolution and dual-channel feature fusion are utilized in our method. In the shallow network layer, we employ a dual-channel convolutional structure, combining a large convolutional group with a small convolutional group to enhance the extraction of high-low frequency fault information from images. The improved GhostNetV2 bottleneck layer was used in the deeper layer of the network to obtain more beneficial features through the dynamic convolution and attention mechanism. Finally, fault classification and evaluation under variable working conditions was performed on the Case Western Reserve University and Drivetrain Dynamic Simulator (DDS) datasets. Our results showed that the methods and model used in this study can effectively handle the precision fault detection across various operational scenarios.

Funder

Innovation Program of Beijing University of Civil Engineering and Architecture

Nature Science Foundation of Beijing, China

Young Teachers’ Research Ability Enhancement Program

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3