Spatial attention-based convolutional transformer for bearing remaining useful life prediction

Author:

Chen ChongORCID,Wang Tao,Liu Ying,Cheng Lianglun,Qin Jian

Abstract

Abstract The remaining useful life (RUL) prediction is of significance to the health management of bearings. Recently, deep learning has been widely investigated for bearing RUL prediction due to its great success in sequence learning. However, the improvement of the prediction accuracy of existing deep learning algorithms heavily relies on feature engineering such as handcrafted feature generation and time–frequency transformation, which increase the complexity and difficulty of the actual deployment. In this paper, a novel spatial attention-based convolutional transformer (SAConvFormer) is proposed to establish an accurate bearing RUL prediction model based on raw vibration data without prior knowledge or feature engineering. In this algorithm, firstly, a convolutional neural network enhanced by a spatial attention mechanism is proposed to squeeze the feature maps and extract the local and global features from raw bearing vibration data effectively. Then, the extracted senior features are fed into a transformer network to further explore the sequential patterns relevant to the bearing RUL. An experimental study using the XJTU-SY rolling bearings dataset revealed the merits of the proposed deep learning algorithm in terms of root-mean-square-error (RMSE) and mean-absolute-error (MAE) in comparison with other state-of-the-art algorithms.

Funder

Key Program of NSFC-Guangdong Joint Funds

Dedicated Fund for Promoting High-Quality Economic Development in Guangdong Province

Natural Science Foundation of Guangdong Province

Guangdong Provincial Key Laboratory of Cyber-Physical System

Major project of science and technology plan of Foshan City

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3