Intelligent fault diagnosis of ultrasonic motors based on graph-regularized CNN-BiLSTM

Author:

Li PengORCID,Qin TaichunORCID,Zhang AiboORCID,Li XingqiuORCID

Abstract

Abstract The ultrasonic motor (USM) is peculiarly prone to failure due to continuous high-frequency friction-related power transfer, whose failure mechanisms are remarkably different from traditional induction motors. Intelligent fault diagnosis provides a way to alarm and avoid catastrophic losses proactively. However, previous studies using deep learning usually ignore the inherent geometric structure of the signal distribution. This paper proposes an intelligent multi-signal fault diagnosis framework for USMs to restore the linear or nonlinear manifold structure by preserving the internal structure by integrating graph regularization with deep neural networks. Firstly, the one-dimensional CNN to learn spatial correlations and BiLSTM to exploit temporal dependencies are coalesced to build the deep neural network. Then, an improved k-nearest neighbor graph is proposed to protect the geometric structure information and force the latent features to be more concentrated within their classes. Moreover, the layer in the deep architecture to integrate graph regularization is designed to reduce computation cost, and an adaptive decay strategy is considered to adjust the coefficient of graph regularized automatically. A two-stage training algorithm is developed by considering the time to calculate the graph regularization term. Finally, the proposed multi-signal fault diagnosis framework is validated using datasets from the fault injection experiment of similar USMs in China’s Yutu rover of Chang’e lunar probe. Experimental results show that the proposed method can effectively discriminate different fault types.

Funder

Reliability Assurance Center of Chinese Academy of Sciences

the opening fund of Key Laboratory of Silicon Device and Technology, Chinese Academy of Sciences

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3