Integration of liquid crystal optical delay and mechanical stage optical delay for measurement of ultrafast autocorrelations and terahertz pulses

Author:

Spotts IsaacORCID,Brodie C HarrisonORCID,Collier Christopher M

Abstract

Abstract To improve the temporal resolution in an optical delay system that uses a conventional mechanical delay stage, we integrate an in-line liquid crystal (LC) wave retarder. Previous implementations of LC optical delay methods are limited due to the small temporal window provided. Using a conventional mechanical delay stage system in series with the LC wave retarder, the temporal window is lengthened. Additionally, the limitation on temporal resolution resulting from the minimum optical path alteration (resolution of 400 nm) of the conventionally used mechanical delay stage is reduced via the in-line wave retarder (resolution of 50 nm). Interferometric autocorrelation measurements are conducted at multiple laser emission frequencies (349, 357, 375, 394, and 405 THz) using the in-line LC and conventional mechanical delay stage systems. The in-line LC system is compared to the conventional mechanical delay stage system to determine the improvements in temporal resolution relating to maximum resolvable frequency. This work demonstrates that the integration of the in-line LC system can extend the maximum resolvable frequency from 375 to 3000 THz. The in-line LC system is also applied for measurement of terahertz pulses.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3