A novel robust intelligent fault diagnosis method for rolling bearings based on SPAVMD and WOA-LSSVM under noisy conditions

Author:

Yan XiaoanORCID,Hua Xing,Jiang Dong,Xiang LingORCID

Abstract

Abstract Aiming at the problem that the fault information of rolling bearings under harsh operation environment is easily submerged by strong noise interference, which causes the traditional method to be difficult to identify bearing faults effectively, this paper proposes a novel robust intelligent fault diagnosis method for rolling bearings based on sparsity-assisted parameter adjustable variational mode decomposition (VMD) and whale optimization algorithm-based optimized least-squares support vector machine (WOA-LSSVM). Firstly, a sparsity measurement named the improved Gini index is introduced as the fitness function of grid search algorithm to adaptively adjust and search for the optimal decomposed mode number K and penalty factor α of VMD. Additionally, VMD containing the optimal parameters is adopted to decompose the original bearing vibration signal into several intrinsic mode function (IMF), and the effective signal reconstruction is performed by screening the sensitive IMF components according to the effective weighted kurtosis Gini index criterion. Subsequently, the refine composite multi-scale dispersion entropy of the reconstructed signal is further calculated to establish a multi-dimensional feature vector set. Finally, the constructed feature vector set is fed into the WOA-LSSVM to achieve automatic fault identification of rolling bearings. The effectiveness of the proposed method is verified by two experimental examples. Experimental results show that the proposed method has higher fault recognition accuracy and better robustness against noise than other homologous methods in noisy conditions. This study provides a new perspective for the developing of robust diagnosis methods.

Funder

National Natural Science Foundation of China

Natural Science Fund for Colleges and Universities in Jiangsu Province

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3