Development of coated heat flux gauges for fast responding measurements

Author:

Siroka ShawnORCID,Berdanier Reid AORCID,Thole Karen A

Abstract

Abstract Thermal systems often exhibit transient behaviors that have important implications for the operation of the system and can be difficult to predict. For these reasons, experimental testing is often required to ensure system durability requirements are achieved. One important parameter governing the survivability of components in hot, high-stress environments is the heat flux into the part that dictates the temperature distribution for the component. However, sensors required to experimentally characterize heat fluxes in extreme environments must also be resilient. This study presents the development of coated heat transfer gauges capable of robust, high-frequency measurements in turbine research facilities. The addition of a protective coating increases the durability of the gauge, but inherent of that coating is the attenuation of high-frequency temperature penetrations. As a result, this study first outlines the use of analytical solutions to define a gauge design for a specific frequency range and heat transfer, ensuring that subsurface signals can be rectified to surface conditions through inverse methods. Then, the fabrication of polyimide substrate sensors with a parylene-F coating is described. Micro surface heaters added to the custom sensors were used to determine important geometric and thermal properties necessary to calculate accurate surface heat flux. Ultimately, this work shows increased sensor robustness in a turbine test bed and experimentally validates that the frequency response of the fabricated sensors meet the design intent.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3