Multivariate time-varying complex signal processing framework and its application in rotating machinery rotor-bearing system

Author:

Huang Jie,Cui XiaolongORCID,Li ChaoshunORCID,Xiao Zhihuai,Chen Qiming

Abstract

Abstract Affected by multi-field coupling factors, the vibration response of rotating machinery similar to the hydro-generator unit often exhibits strong time-varying frequency components, which makes rotor fault detection more challenging. The fusion analysis of the vibration signals of multiple bearing sections of the rotor has been proved to be a very effective method for rotor vibration fault diagnosis. However, how to more accurately and synchronously extract the instantaneous features of rotor non-stationary vibration signals associated with multiple sections has been unresolved. To this end, a framework for multivariate time-varying complex signal decomposition of the rotor-bearing system (RBS) is proposed, namely multivariate complex nonlinear chirp mode decomposition. First, the decomposition of multivariate time-varying complex signals is realized by two-stage processing. Second, instantaneous orbit features (IOFs) are obtained through the proposed framework. Finally, a three-dimensional instantaneous orbit map reflecting the time-varying process is constructed through the IOFs. The framework not only realizes the decomposition of the multi-channel time-varying complex signals of the rotor but also simultaneously extracts the instantaneous features of the multi-channel signals. In addition, it also realizes the description of the instantaneous vibration state of the RBS in the non-stationary process (such as startup and shutdown). Simulation experiments show that the framework is superior to other multi-channel signal processing methods in processing time-varying complex signals. The results based on field-measured signals show that the framework can guide the real-time analysis of the signals generated by rotating machinery, which improves the intuition of condition monitoring.

Funder

National Natural Science Foundation of China

Applied Fundamental Frontier Project of Wuhan Science and Technology Bureau

Natural Science Foundation of Hubei Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference40 articles.

1. Fault detection in rotor bearing systems using time frequency techniques;Chandra;Mech. Syst. Signal Process.,2016

2. Multivariate nonlinear chirp mode decomposition;Chen;Signal Process.,2020

3. Nonlinear chirp mode decomposition: a variational method;Chen;IEEE Trans. Signal Process.,2017

4. Warped variational mode decomposition with application to vibration signals of varying-speed rotating machineries;Chen;IEEE Trans. Instrum. Meas.,2018

5. Three-dimensional instantaneous orbit map for rotor-bearing system based on a novel multivariable complex variational mode decomposition algorithm;Cui,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3