Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors

Author:

Hegde Gautam,Himakar Balaji,Rao M V Srisha,Hegde Gopalkrishna,Asokan SORCID

Abstract

Abstract In this work, we have demonstrated the use of fiber Bragg grating (FBG) sensors for simultaneous measurement of wall static pressure and temperature in a supersonic ejector. Supersonic ejectors are ground-based high-speed aerodynamic test facilities characterized by harsh conditions, such as high pressure and temperature gradients. An FBG-based sensor setup was developed consisting of a pressure measuring bare FBG and a specially designed pressure-insensitive FBG temperature probe that can be mounted on the wall of the supersonic ejector. The FBG temperature probe was used for temperature measurement as well as temperature compensation of the pressure measuring FBG sensor. Wall static pressure measurements in the supersonic ejector were carried out at different tank pressures and Mach number flows. The FBG pressure measurements were validated with those of standard piezoresistive-based sensor measurements. Both responses were found to match closely, with FBG sensors having a faster response time and higher pressure resolution. Fluid structure interaction simulation was carried out in Comsol Multiphysics to understand the interaction of high-speed turbulent flow with FBG sensor. The FBG strain profile due to flow-induced stress and its dependence on flow pressure was studied. A detailed analysis of the effect of preceding fiber length on FBG pressure measurement was carried out. FBG sensors, due to their miniature size, ability to withstand harsh environments and multi-parameter sensing capability, can be used in ground-based aerodynamic test facilities with minimal intrusion into the flow.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3