Flexible rotor unbalance fault location method based on transfer learning from simulation to experiment data

Author:

Han Shuo,Wang Zihuimin,Zhang Hao,Zhang FanyuORCID,Han QingkaiORCID

Abstract

Abstract In the study of the high-speed dynamic balance of flexible rotors, rotor unbalance positioning is a challenging topic. Particularly for slender rotors, the axial position of the unbalance has an important influence on the high-speed dynamic balance. The unbalance at different axial positions is not the same or even opposite in different rotor mode vibration behaviors. If the unbalance position of a rotor can be identified, the actual unbalance of the rotor can be reduced from the root. This balance method has the same effect in each vibration mode of the rotor; hence, low-speed dynamic balance can be realized to replace high-speed dynamic balance, considerably saving on costs. Deep learning based on few labeled samples can achieve good results for the identification of unbalanced positions; however, there are infinite potential positions of unbalance in the actual rotor. It is difficult to collect sufficient labeled samples to train a reliable intelligent diagnostic model. Fortunately, a large number of rotor vibration datasets labeled with different unbalance positions are available using the rotor dynamic model, and the unbalance position data calculated using the dynamic model contain diagnostic knowledge related to the rotor unbalance position data measured in the rig. Hence, inspired by transfer learning, this study proposed a transfer learning method using dynamic model simulation and experiment data for flexible rotor unbalance fault location. Cross-domain deep transfer recognition of rotor unbalance position was realized.

Funder

Natural Science Foundation of Liaoning Province

The National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference49 articles.

1. Dynamic balancing of super-critical rotating structures using slow-speed data via parametric excitation;Tresser;J. Sound Vib.,2018

2. Identification of multiple faults in rotor systems;Bachschmid;J. Sound Vib.,2003

3. Unbalance vibration characteristics and sensitivity analysis of the dual-rotor system in aeroengines;Ma;J. Aerosp. Eng.,2021

4. On the centrifugal force of rotating shafts;Rankine;Engineer,1869

5. Das problem der lavalschen turbinewelle;Foppl;Der Civilingenieur,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3