Response of primary auditory neurons to stimulation with infrared light in vitro

Author:

Brown William G A,Needham KarinaORCID,Begeng James MORCID,Thompson Alexander C,Nayagam Bryony AORCID,Kameneva TatianaORCID,Stoddart Paul RORCID

Abstract

Abstract Objective. Infrared light can be used to modulate the activity of neuronal cells through thermally-evoked capacitive currents and thermosensitive ion channel modulation. The infrared power threshold for action potentials has previously been found to be far lower in the in vivo cochlea when compared with other neuronal targets, implicating spiral ganglion neurons (SGNs) as a potential target for infrared auditory prostheses. However, conflicting experimental evidence suggests that this low threshold may arise from an intermediary mechanism other than direct SGN stimulation, potentially involving residual hair cell activity. Approach. Patch-clamp recordings from cultured SGNs were used to explicitly quantify the capacitive and ion channel currents in an environment devoid of hair cells. Neurons were irradiated by a 1870 nm laser with pulse durations of 0.2–5.0 ms and powers up to 1.5 W. A Hodgkin-Huxley-type model was established by first characterising the voltage dependent currents, and then incorporating laser-evoked currents separated into temperature-dependent and temperature-gradient-dependent components. This model was found to accurately simulate neuronal responses and allowed the results to be extrapolated to stimulation parameter spaces not accessible during this study. Main results. The previously-reported low in vivo SGN stimulation threshold was not observed, and only subthreshold depolarisation was achieved, even at high light exposures. Extrapolating these results with our Hodgkin-Huxley-type model predicts an action potential threshold which does not deviate significantly from other neuronal types. Significance. This suggests that the low-threshold response that is commonly reported in vivo may arise from an alternative mechanism, and calls into question the potential usefulness of the effect for auditory prostheses. The step-wise approach to modelling optically-evoked currents described here may prove useful for analysing a wider range of cell types where capacitive currents and conductance modulation are dominant.

Funder

Australian Research Council

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3