Relating EEG to continuous speech using deep neural networks: a review

Author:

Puffay CorentinORCID,Accou BerndORCID,Bollens LiesORCID,Monesi Mohammad JalilpourORCID,Vanthornhout JonasORCID,Van hamme HugoORCID,Francart TomORCID

Abstract

Abstract Objective. When a person listens to continuous speech, a corresponding response is elicited in the brain and can be recorded using electroencephalography (EEG). Linear models are presently used to relate the EEG recording to the corresponding speech signal. The ability of linear models to find a mapping between these two signals is used as a measure of neural tracking of speech. Such models are limited as they assume linearity in the EEG-speech relationship, which omits the nonlinear dynamics of the brain. As an alternative, deep learning models have recently been used to relate EEG to continuous speech. Approach. This paper reviews and comments on deep-learning-based studies that relate EEG to continuous speech in single- or multiple-speakers paradigms. We point out recurrent methodological pitfalls and the need for a standard benchmark of model analysis. Main results. We gathered 29 studies. The main methodological issues we found are biased cross-validations, data leakage leading to over-fitted models, or disproportionate data size compared to the model’s complexity. In addition, we address requirements for a standard benchmark model analysis, such as public datasets, common evaluation metrics, and good practices for the match-mismatch task. Significance. We present a review paper summarizing the main deep-learning-based studies that relate EEG to speech while addressing methodological pitfalls and important considerations for this newly expanding field. Our study is particularly relevant given the growing application of deep learning in EEG-speech decoding.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference67 articles.

1. Modeling the relationship between acoustic stimulus and EEG with a dilated convolutional neural network;Accou,2021b

2. Predicting speech intelligibility from EEG using a dilated convolutional network;Accou,2021a

3. Decoding of the speech envelope from EEG using the VLAAI deep neural network;Accou;Sci. Rep.,2023

4. A novel kernel for RBF based neural networks;Aftab;Abstr. Appl. Anal.,2014

5. A large auditory EEG decoding dataset;Bollens,2023a

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3