Sustained and potent analgesia with negligible side effects enabled by adaptive individualized granular stimulation in rat brainstem

Author:

Forni MatildeORCID,Thorbergsson Palmi ThorORCID,Gällentoft Lina,Thelin Jonas,Schouenborg Jens

Abstract

Abstract Objectives. To clarify if an adaptive current stimulation protocol, in which current amplitude is modulated during continuous stimulation, provides better efficacy than constant current stimulation protocol with respect to analgesia caused by individualized stimulation in rat periaqueductal gray matter (PAG) /dorsal raphe nuclei (DRN). Approach. Ultrathin microelectrodes adapted for recording (n = 6) and stimulation (n = 16) were implanted in rat primary somatosensory cortex and PAG/DRN, respectively. In each animal included (n = 12), a subset of PAG/DRN microelectrodes (n = 1–3 per animal) was selected that on simultaneous stimulation blocked nociceptive withdrawal reflexes in awake unrestrained animals without noticeable side effects. Analgesic effects were subsequently assessed from both nociceptive withdrawal reflexes and intracortical pain-related responses on CO2 laser hind paw stimulation. The analgesic effects of adaptive current PAG/DRN stimulation comprising incremental increases of 5 μA/microelectrode (initial median current 30 μA/microelectrode) when effects declined were compared to the effects of constant current stimulation. Behavioral effects and brain state related changes were analyzed using quantitative movement analysis and electrocorticography (recorded on top of the dura mater), respectively. Tissue reactions and probe placement in PAG/DRN were assessed with immunohistochemistry. Main results. Powerful and sustained (4 h) analgesia was achieved with the adaptive current protocol within a rather wide area of PAG/DRN. Analgesic after-effects were seen for up to 30 min. Behavioral and brain state related side effects were minimal. Moreover, 6 weeks after implantation, there were no traces of bleedings, only small glial reactions and small but not statistically significant loss of neurons nearby indicating that the microelectrode stimulation employed is biocompatible. Significance. The results indicate that sustained and powerful analgesia with minimal side effects can be achieved by granular and individualized stimulation in PAG/DRN using an adaptive current stimulation protocol. This microelectrode technology and stimulation paradigm thus has the potential of providing a highly efficient and safe pain therapy.

Funder

Vetenskapsrådet

Lund University STYR grant

Skåne County Council’s Research and Development Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3