Neurostimulators for high-resolution artificial retina: ASIC design challenges and solutions

Author:

Jeong HyunbeenORCID,Kim JisungORCID,Seo Jong-mo,Neviani AndreaORCID

Abstract

Abstract Objective. Neurostimulator is one of the most important part in artificial retina design. In this paper, we discuss the main challenges in the design of application-specific integrated circuit for high-resolution artificial retina and suggest corresponding solutions. Approach. Problems in the design of the neurostimulator for the existing artificial retina have not been solved yet are analyzed and solutions are presented. For verification of the solutions, mathematical proof, MATLAB and Ansys simulations are used. Main results. The drawbacks of resorting to a high-voltage complementary metal oxide semiconductor (CMOS) process to deal with the large voltage compliance demanded by the stimulator output stage are pointed out, and an alternative approach based on a circuit that switches the voltage of the common reference electrode is proposed to overcome. The necessity of an active discharge circuit to remove the residual charge of electrodes caused by an unbalanced stimulus is investigated. We present a circuit analysis showing that the use of a passive discharge circuit is sufficient to suppress problematic direct current in most situations. Finally, possible restrictions on input and output (I/O) count are investigated by estimating the resistive-capacitive delay caused by the interconnection between the I/O pad and the microelectrode array. Significance. The results of this paper clarified the problems currently faced by neurostimulator design for the artificial retina. Through the solutions presented in this study, circuits with more competitiveness in power and area consumption can be designed.

Funder

Korea Health Industry Development Institute

Korea Medical Device Development Fund

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3