Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant

Author:

Pulferer Hannah SORCID,Ásgeirsdóttir Brynja,Mondini ValeriaORCID,Sburlea Andreea IORCID,Müller-Putz Gernot RORCID

Abstract

Abstract Objective. In people with a cervical spinal cord injury (SCI) or degenerative diseases leading to limited motor function, restoration of upper limb movement has been a goal of the brain-computer interface field for decades. Recently, research from our group investigated non-invasive and real-time decoding of continuous movement in able-bodied participants from low-frequency brain signals during a target-tracking task. To advance our setup towards motor-impaired end users, we consequently chose a new paradigm based on attempted movement. Approach. Here, we present the results of two studies. During the first study, data of ten able-bodied participants completing a target-tracking/shape-tracing task on-screen were investigated in terms of improvements in decoding performance due to user training. In a second study, a spinal cord injured participant underwent the same tasks. To investigate the merit of employing attempted movement in end users with SCI, data of the spinal cord injured participant were recorded twice; once within an observation-only condition, and once while simultaneously attempting movement. Main results. We observed mean correlations well above chance level for continuous motor decoding based on attempted movement in able-bodied participants. Additionally, no global improvement over three sessions within five days, both in sensor and in source space, could be observed across all participants and movement parameters. In the participant with SCI, decoding performance well above chance was found. Significance. No presence of a learning effect in continuous attempted movement decoding in able-bodied participants could be observed. In contrast, non-significantly varying decoding patterns may promote the use of source space decoding in terms of generalized decoders utilizing transfer learning. Furthermore, above-chance correlations for attempted movement decoding ranging between those of observation only and executed movement were seen in one spinal cord injured participant, suggesting attempted movement decoding as a possible link between feasibility studies in able-bodied and actual applications in motor impaired end users.

Funder

European Research Council

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3