A machine learning artefact detection method for single-channel infant event-related potential studies

Author:

Marchant SimonORCID,van der Vaart MarianneORCID,Pillay Kirubin,Baxter LukeORCID,Bhatt Aomesh,Fitzgibbon Sean,Hartley CarolineORCID,Slater RebeccahORCID

Abstract

Abstract Objective. Automated detection of artefact in stimulus-evoked electroencephalographic (EEG) data recorded in neonates will improve the reproducibility and speed of analysis in clinical research compared with manual identification of artefact. Some studies use very short, single-channel epochs of EEG data with little recorded EEG per infant—for example because the clinical vulnerability of the infants limits access for recording. Current artefact-detection methods that perform well on adult data and resting-state and multi-channel data in infants are not suitable for this application. The aim of this study was to create and test an automated method of detecting artefact in single-channel 1500 ms epochs of infant EEG. Approach. A total of 410 epochs of EEG were used, collected from 160 infants of 28–43 weeks postmenstrual age. This dataset—which was balanced to include epochs of background activity and responses to visual, auditory, tactile and noxious stimuli—was presented to seven independent raters, who independently labelled the epochs according to whether or not they were able to visually identify artefacts. The data was split into a training set (340 epochs) and an independent test set (70 epochs). A random forest model was trained to identify epochs as either artefact or not artefact. Main results. This model performs well, achieving a balanced accuracy of 0.81, which is as good as manual review of data. Accuracy was not significantly related to the infant age or type of stimulus. Significance. This method provides an objective tool for automated artefact rejection for short epoch, single-channel EEG in neonates and could increase the utility of EEG in neonates in both the clinical and research setting.

Funder

Engineering and Physical Sciences Research Council

National Institute for Health and Care Research Applied Research Collaboration Oxford and Thames Valley

Wellcome Trust

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3