Evaluation of multiple perceptual qualities of transcutaneous electrical nerve stimulation for evoked tactile sensation in forearm amputees

Author:

Zhang Jie,Hao ManzhaoORCID,Yang Fei,Liang Wenyuan,Sun Aiping,Chou Chi-Hong,Lan NingORCID

Abstract

Abstract Objective. Evoked tactile sensation (ETS) elicited by transcutaneous electrical nerve stimulation (TENS) is promising to convey digit-specific sensory information to amputees naturally and non-invasively. Fitting ETS-based sensory feedback to amputees entails customizing coding of multiple sensory information for each stimulation site. This study was to elucidate the consistency of percepts and qualities by TENS at multiple stimulation sites in amputees retaining ETS. Approach. Five transradial amputees with ETS and fourteen able-bodied subjects participated in this study. Surface electrodes with small size (10 mm in diameter) were adopted to fit the restricted projected finger map on the forearm stump of amputees. Effects of stimulus frequency on sensory types were assessed, and the map of perceptual threshold for each sensation was characterized. Sensitivity for vibration and buzz sensations was measured using distinguishable difference in stimulus pulse width. Rapid assessments for modulation ranges of pulse width at fixed amplitude and frequency were developed for coding sensory information. Buzz sensation was demonstrated for location discrimination relating to prosthetic fingers. Main results. Vibration and buzz sensations were consistently evoked at 20 Hz and 50 Hz as dominant sensation types in all amputees and able-bodied subjects. Perceptual thresholds of different sensations followed a similar strength-duration curve relating stimulus amplitude to pulse width. The averaged distinguishable difference in pulse width was 12.84 ± 7.23 μs for vibration and 15.21 ± 6.47 μs for buzz in able-bodied subjects, and 14.91 ± 10.54 μs for vibration and 11.30 ± 3.42 μs for buzz in amputees. Buzz coding strategy enabled five amputees to discriminate contact of individual fingers with an overall accuracy of 77.85%. Significance. The consistency in perceptual qualities of dominant sensations can be exploited for coding multi-modality sensory feedback. A fast protocol of sensory coding is possible for fitting ETS-based, non-invasive sensory feedback to amputees.

Funder

Ministry of Science and Technology of the People’s Republic of China

Key-Area Research and Development Program of Guangdong Province

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fusion of dual modalities of non-invasive sensory feedback for object profiling with prosthetic hands;Frontiers in Neurorobotics;2023-12-13

2. Predictive Warning of Nociceptive Temperature during Prosthetic Hand Prehension*;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. Precision Control of Fingertip Force by a Biorealistic Hand with a Pair of Neuromorphic Muscles *;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

4. Closed-Loop Control of Grasp Force With Biorealistic Hand Prosthesis;2023 11th International IEEE/EMBS Conference on Neural Engineering (NER);2023-04-24

5. Biorealistic hand prosthesis with compliance control and noninvasive somatotopic sensory feedback;Progress in Biomedical Engineering;2023-04-01

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3