EEG microstate in first-episode drug-naive adolescents with depression

Author:

Zhao Zongya,Niu Yanxiang,Zhao Xiaofeng,Zhu Yu,Shao Zhenpeng,Wu Xingyang,Wang Chong,Gao Xudong,Wang Chang,Xu Yongtao,Zhao Junqiang,Gao Zhixian,Ding Junqing,Yu YiORCID

Abstract

Abstract A growing number of studies have revealed significant abnormalities in electroencephalography (EEG) microstate in patients with depression, but these findings may be affected by medication. Therefore, how the EEG microstates abnormally change in patients with depression in the early stage and without the influence of medication has not been investigated so far. Resting-state EEG data and Hamilton Depression Rating Scale (HDRS) were collected from 34 first-episode drug-naïve adolescent with depression and 34 matched healthy controls. EEG microstate analysis was applied and nonlinear characteristics of EEG microstate sequences were studied by sample entropy and Lempel–Ziv complexity (LZC). The microstate temporal parameters and complexity were tried to train an SVM for classification of patients with depression. Four typical EEG microstate topographies were obtained in both groups, but microstate C topography was significantly abnormal in depression patients. The duration of microstate B, C, D and the occurrence and coverage of microstate B significantly increased, the occurrence and coverage of microstate A, C reduced significantly in depression group. Sample entropy and LZC in the depression group were abnormally increased and were negatively correlated with HDRS. When the combination of EEG microstate temporal parameters and complexity of microstate sequence was used to classify patients with depression from healthy controls, a classification accuracy of 90.9% was obtained. Abnormal EEG microstate has appeared in early depression, reflecting an underlying abnormality in configuring neural resources and transitions between distinct brain network states. EEG microstate can be used as a neurophysiological biomarker for early auxiliary diagnosis of depression.

Funder

Science and Technology Research Project of Xinxiang City

the Key project of Henan Medical Science and technology research plan

Natural Science Foundation of Henan Province

Science and Technology Research Project of Henan Province

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3