An ensemble deep-learning approach for single-trial EEG classification of vibration intensity

Author:

Alsuradi HaneenORCID,Park Wanjoo,Eid MohamadORCID

Abstract

Abstract Objective. Single-trial electroencephalography (EEG) classification is a promising approach to evaluate the cognitive experience associated with haptic feedback. Convolutional neural networks (CNNs), which are among the most widely used deep learning techniques, have demonstrated their effectiveness in extracting EEG features for the classification of different cognitive functions, including the perception of vibration intensity that is often experienced during human-computer interaction. This paper proposes a novel CNN ensemble model to classify the vibration-intensity from a single trial EEG data that outperforms the state-of-the-art EEG models. Approach. The proposed ensemble model, named SE NexFusion, builds upon the observed complementary learning behaviors of the EEGNex and TCNet Fusion models, exhibited in learning personal as well generic neural features associated with vibration intensity. The proposed ensemble employs multi-branch feature encoders corroborated with squeeze-and-excitation units that enables rich-feature encoding while at the same time recalibrating the weightage of the obtained feature maps based on their discriminative power. The model takes in a single trial of raw EEG as an input and does not require complex EEG signal-preprocessing. Main results. The proposed model outperforms several state-of-the-art bench-marked EEG models by achieving an average accuracy of 60.7% and 61.6% under leave-one-subject-out and within-subject cross-validation (three-classes), respectively. We further validate the robustness of the model through Shapley values explainability method, where the most influential spatio-temporal features of the model are counter-checked with the neural correlates that encode vibration intensity. Significance. Results show that SE NexFusion outperforms other benchmarked EEG models in classifying the vibration intensity. Additionally, explainability analysis confirms the robustness of the model in attending to features associated with the neural correlates of vibration intensity.

Funder

This work is supported in part by the NYUAD Center for Artificial Intelligence and Robotics, funded by Tamkeen

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference42 articles.

1. Haptics: The present and future of artificial touch sensation;Culbertson;Annu. Rev. Control Robot. Auton. Syst.,2018

2. Measuring haptic experience: elaborating the hx model with scale development;Sathiyamurthy,2021

3. EEG correlates of task engagement and mental workload in vigilance, learning and memory tasks;Berka;Aviat. Space Environ. Med.,2007

4. A review of the use of psychophysiological methods in game research;Kivikangas;J. Gaming Virtual Worlds,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural correlates of thermal stimulation during active touch;Frontiers in Neuroscience;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3