The identification of interacting brain networks during robot-assisted training with multimodal stimulation

Author:

Wang DuojinORCID,Huang YanpingORCID,Liang Sailan,Meng Qingyun,Yu Hongliu

Abstract

Abstract Objective. Robot-assisted rehabilitation training is an effective way to assist rehabilitation therapy. So far, various robotic devices have been developed for automatic training of central nervous system following injury. Multimodal stimulation such as visual and auditory stimulus and even virtual reality technology were usually introduced in these robotic devices to improve the effect of rehabilitation training. This may need to be explained from a neurological perspective, but there are few relevant studies. Approach. In this study, ten participants performed right arm rehabilitation training tasks using an upper limb rehabilitation robotic device. The tasks were completed under four different feedback conditions including multiple combinations of visual and auditory components: auditory feedback; visual feedback; visual and auditory feedback (VAF); non-feedback. The functional near-infrared spectroscopy devices record blood oxygen signals in bilateral motor, visual and auditory areas. Using hemoglobin concentration as an indicator of cortical activation, the effective connectivity of these regions was then calculated through Granger causality. Main results. We found that overall stronger activation and effective connectivity between related brain regions were associated with VAF. When participants completed the training task without VAF, the trends in activation and connectivity were diminished. Significance. This study revealed cerebral cortex activation and interacting networks of brain regions in robot-assisted rehabilitation training with multimodal stimulation, which is expected to provide indicators for further evaluation of the effect of rehabilitation training, and promote further exploration of the interaction network in the brain during a variety of external stimuli, and to explore the best sensory combination.

Funder

Scientific and Innovative Action Plan of Shanghai

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3