Novel machine learning approaches for improving the reproducibility and reliability of functional and effective connectivity from functional MRI

Author:

Mellema Cooper JORCID,Montillo Albert AORCID

Abstract

Abstract Objective. New measures of human brain connectivity are needed to address gaps in the existing measures and facilitate the study of brain function, cognitive capacity, and identify early markers of human disease. Traditional approaches to measure functional connectivity (FC) between pairs of brain regions in functional MRI, such as correlation and partial correlation, fail to capture nonlinear aspects in the regional associations. We propose a new machine learning based measure of FC ( ML.FC ) which efficiently captures linear and nonlinear aspects. Approach. To capture directed information flow between brain regions, effective connectivity (EC) metrics, including dynamic causal modeling and structural equation modeling have been used. However, these methods are impractical to compute across the many regions of the whole brain. Therefore, we propose two new EC measures. The first, a machine learning based measure of effective connectivity ( ML.EC ), measures nonlinear aspects across the entire brain. The second, Structurally Projected Granger Causality ( SP.GC ) adapts Granger Causal connectivity to efficiently characterize and regularize the whole brain EC connectome to respect underlying biological structural connectivity. The proposed measures are compared to traditional measures in terms of reproducibility and the ability to predict individual traits in order to demonstrate these measures’ internal validity. We use four repeat scans of the same individuals from the Human Connectome Project and measure the ability of the measures to predict individual subject physiologic and cognitive traits. Main results. The proposed new FC measure of ML.FC attains high reproducibility (mean intra-subject R 2 of 0.44), while the proposed EC measure of SP.GC attains the highest predictive power (mean R 2 across prediction tasks of 0.66). Significance. The proposed methods are highly suitable for achieving high reproducibility and predictiveness and demonstrate their strong potential for future neuroimaging studies.

Funder

NIH NINDS

NIH NCI

NIH NIGMS

NIH NIA

Lyda Hill Foundation

King Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3