PMotion: an advanced markerless pose estimation approach based on novel deep learning framework used to reveal neurobehavior

Author:

Lv XiaodongORCID,Liu Haijie,Chen LuyaoORCID,Dai Chuankai,Wei Penghu,Hao Junwei,Zhao Guoguang

Abstract

Abstract Objective. The evaluation of animals’ motion behavior has played a vital role in neuromuscular biomedical research and clinical diagnostics, which reflects the changes caused by neuromodulation or neurodamage. Currently, the existing animal pose estimation methods are unreliable, unpractical, and inaccurate. Approach. Data augmentation (random scaling, random standard deviation Gaussian blur, random contrast, and random uniform color quantization) is adopted to augment image dataset. For the key points recognition, we present a novel efficient convolutional deep learning framework (PMotion), which combines modified ConvNext using multi-kernel feature fusion and self-defined stacked Hourglass block with SiLU activation function. Main results. PMotion is useful to predict the key points of dynamics of unmarked animal body joints in real time with high spatial precision. Gait quantification (step length, step height, and joint angle) was performed for the study of lateral lower limb movements with rats on a treadmill. Significance. The performance accuracy of PMotion on rat joint dataset was improved by 1.98, 1.46, and 0.55 pixels compared with deepposekit, deeplabcut, and stacked hourglass, respectively. This approach also may be applied for neurobehavioral studies of freely moving animals’ behavior in challenging environments (e.g. Drosophila melanogaster and openfield-Pranav) with a high accuracy.

Funder

National Natural Science Foundation of China

Translational and Application Project of Brain-inspired

Beijing Municipal Health Commission

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3